Skip to content

@toolcog/core

Toolcog core

Interfaces

Embedder()

A function that returns an EmbeddingVector for each provided string. If the embed argument is a string, then an embedding vector is returned. If the embed argument is an array of strings, then an array of embedding vectors is returned.

Embedder<T>(embed, options?): Promise<Embedded<T>>

A function that returns an EmbeddingVector for each provided string. If the embed argument is a string, then an embedding vector is returned. If the embed argument is an array of strings, then an array of embedding vectors is returned.

Type Parameters

T extends string | readonly string[]

Parameters

embed: T

options?: EmbedderOptions

Returns

Promise<Embedded<T>>

Defined in

embedding.ts:92


EmbedderConfig

Options for configuring an Embedder function.

Note that embedder plugins may augment this type with additional options.

Extended by

Properties

model?

optional model: string & object

The default model the embedder should use.

Defined in

embedding.ts:52


EmbedderOptions

Options for controlling an Embedder call.

Note that embedder plugins may augment this type with additional options.

Extended by

Properties

model?

optional model: string & object

The model the embedder should use to generate embedding vectors.

Defined in

embedding.ts:64

signal?

optional signal: AbortSignal

An abort signal that can be used to cancel the embedder call.

Defined in

embedding.ts:69


EmbeddingModelNames

Each key of this type represents the name of a known embedding model. Embedder plugins augment this type to add supported model names.

Use the EmbeddingModel type for strings that should represent embedding model names. The EmbeddingModel type extracts the keys of this type. The indirection through this type is necessary because type aliases cannot be augmented.


Embeddings<V>

A set of embeddings keyed by the embedded text.

Type Parameters

V = EmbeddingVector

Indexable

[text: string]: Embedding<V>


GenerativeConfig

Options for configuring a Generator function.

Note that generator plugins may augment this type with additional options.

Extends

Properties

defaults?

optional defaults: Record<string, unknown>

Defined in

generative.ts:186

model?

optional model: string & object

The default model the generator should use.

Inherited from

GeneratorConfig.model

Defined in

generative.ts:103

stream?

optional stream: boolean

Whether or not the generator should stream responses by default.

Inherited from

GeneratorConfig.stream

Defined in

generative.ts:114

system?

optional system: string

The default system prompt the generator should use when generating the response.

Inherited from

GeneratorConfig.system

Defined in

generative.ts:109

tools?

optional tools: null | readonly ToolSource[]

The default set of tools the generator should use.

Overrides

GeneratorConfig.tools

Defined in

generative.ts:184


GenerativeFunction()<F>

Type Parameters

F extends (…args) => unknown = (…args) => unknown

GenerativeFunction(…args): GenerativeReturnType<F>

Parameters

• …args: GenerativeParameters<F>

Returns

GenerativeReturnType<F>

Defined in

generative.ts:213

Properties

description

readonly description: undefined | string

Defined in

generative.ts:219

id

readonly id: string

Defined in

generative.ts:215

instructions

readonly instructions: InstructionsSource

Defined in

generative.ts:225

name

readonly name: string

Defined in

generative.ts:217

parameters

readonly parameters: undefined | Schema

Defined in

generative.ts:221

returns

readonly returns: undefined | Schema

Defined in

generative.ts:223

tools

readonly tools: readonly ToolSource[]

Defined in

generative.ts:227


GenerativeModelNames

Each key of this type represents the name of a known generative model. Generator plugins augment this type to add supported model names.

Use the GenerativeModel type for strings that should represent generative model names. The GenerativeModel type extracts the keys of this type. The indirection through this type is necessary because type aliases cannot be augmented.


GenerativeOptions

Options for controlling a Generator call.

Note that generator plugins may augment this type with additional options.

Extends

Properties

id?

optional id: string

Inherited from

GeneratorOptions.id

Defined in

generative.ts:123

instructions?

optional instructions: InstructionsSource

Instructions the generator should follow when generating the response.

Overrides

GeneratorOptions.instructions

Defined in

generative.ts:192

model?

optional model: string & object

The model the generator should use to generate the response.

Inherited from

GeneratorOptions.model

Defined in

generative.ts:148

parameters?

optional parameters: Schema

A schema that describes the arguments to the generator call.

Inherited from

GeneratorOptions.parameters

Defined in

generative.ts:128

returns?

optional returns: Schema

A schema that describes the value the generator must generate.

Inherited from

GeneratorOptions.returns

Defined in

generative.ts:133

signal?

optional signal: null | AbortSignal

An abort signal that can be used to cancel the generator call.

Inherited from

GeneratorOptions.signal

Defined in

generative.ts:163

stream?

optional stream: boolean

Whether or not the generator should stream responses.

Inherited from

GeneratorOptions.stream

Defined in

generative.ts:158

system?

optional system: string

The system prompt the generator should use when generating the response.

Inherited from

GeneratorOptions.system

Defined in

generative.ts:153

tools?

optional tools: null | readonly ToolSource[]

The tools the generator should use when generating the response.

Overrides

GeneratorOptions.tools

Defined in

generative.ts:190


Generator()

A function that uses a generative model to generate its return value. options.model specifies the generative model to use, if defined. The model will be prompted to follow any instructions provided in options.instructions. And it will be given access to any tools provided in options.tools.

If options.function defines a function schema, the model will be prompted to interpret the args according to its parameter schema, and to generate a response that conform the its return schema. If no function schema is provided, args will be used as the raw prompt, and the model’s response will be returned as a string.

Generator(args, options?): Promise<unknown>

A function that uses a generative model to generate its return value. options.model specifies the generative model to use, if defined. The model will be prompted to follow any instructions provided in options.instructions. And it will be given access to any tools provided in options.tools.

If options.function defines a function schema, the model will be prompted to interpret the args according to its parameter schema, and to generate a response that conform the its return schema. If no function schema is provided, args will be used as the raw prompt, and the model’s response will be returned as a string.

Parameters

args: unknown

options?: GeneratorOptions

Returns

Promise<unknown>

Defined in

generative.ts:180


GeneratorConfig

Options for configuring a Generator function.

Note that generator plugins may augment this type with additional options.

Extended by

Properties

model?

optional model: string & object

The default model the generator should use.

Defined in

generative.ts:103

stream?

optional stream: boolean

Whether or not the generator should stream responses by default.

Defined in

generative.ts:114

system?

optional system: string

The default system prompt the generator should use when generating the response.

Defined in

generative.ts:109

tools?

optional tools: null | readonly ToolSource[]

The default set of tools the generator should use.

Defined in

generative.ts:98


GeneratorOptions

Options for controlling a Generator call.

Note that generator plugins may augment this type with additional options.

Extended by

Properties

id?

optional id: string

Defined in

generative.ts:123

instructions?

optional instructions: InstructionsSource

Instructions the generator should follow when generating the response.

Defined in

generative.ts:138

model?

optional model: string & object

The model the generator should use to generate the response.

Defined in

generative.ts:148

parameters?

optional parameters: Schema

A schema that describes the arguments to the generator call.

Defined in

generative.ts:128

returns?

optional returns: Schema

A schema that describes the value the generator must generate.

Defined in

generative.ts:133

signal?

optional signal: null | AbortSignal

An abort signal that can be used to cancel the generator call.

Defined in

generative.ts:163

stream?

optional stream: boolean

Whether or not the generator should stream responses.

Defined in

generative.ts:158

system?

optional system: string

The system prompt the generator should use when generating the response.

Defined in

generative.ts:153

tools?

optional tools: null | readonly ToolSource[]

The tools the generator should use when generating the response.

Defined in

generative.ts:143


Idiom()<T>

A collection of embeddings associated with a value.

Type Parameters

T

Idiom(): Embeddings<Float32Array>

A collection of embeddings associated with a value.

Returns

Embeddings<Float32Array>

Defined in

idiom.ts:13

Properties

id

readonly id: string

Defined in

idiom.ts:15

value

readonly value: T

Defined in

idiom.ts:17


IdiomResolver()

IdiomResolver(id, value): undefined | Embeddings<Float32Array>

Parameters

id: string

value: unknown

Returns

undefined | Embeddings<Float32Array>

Defined in

idiom.ts:37


Index()<T>

A similarity search index.

Type Parameters

T extends readonly unknown[]

Index(query?, options?): Promise<T[number][]>

A similarity search index.

Parameters

query?: unknown

options?: IndexOptions

Returns

Promise<T[number][]>

Defined in

idiom.ts:91

Properties

embedder

readonly embedder: undefined | Embedder

Defined in

idiom.ts:95

id

readonly id: undefined | string

Defined in

idiom.ts:93

idioms

readonly idioms: Idioms<T>

Defined in

idiom.ts:97


IndexConfig

Options for configuring an Index function.

Extends

Extended by

Properties

limit?

optional limit: number

Defined in

idiom.ts:72

model?

optional model: string & object

The default model the embedder should use.

Inherited from

EmbedderConfig.model

Defined in

embedding.ts:52


Indexer()

A function that returns a similarity Index for a set of idioms.

Indexer<T>(idioms, options?): Promise<Index<T>>

A function that returns a similarity Index for a set of idioms.

Type Parameters

T extends readonly unknown[]

Parameters

idioms: Idioms<T>

options?: IndexerOptions

Returns

Promise<Index<T>>

Defined in

idiom.ts:144


IndexerConfig

Options for configuring an Indexer function.

Extends

Properties

distance?

optional distance: EmbeddingDistance

Defined in

idiom.ts:126

embedder?

optional embedder: Embedder

Defined in

idiom.ts:124

limit?

optional limit: number

Inherited from

IndexConfig.limit

Defined in

idiom.ts:72

model?

optional model: string & object

The default model the embedder should use.

Inherited from

IndexConfig.model

Defined in

embedding.ts:52


IndexerOptions

Options for controlling an Indexer call.

Extends

Properties

distance?

optional distance: EmbeddingDistance

Defined in

idiom.ts:137

embedder?

optional embedder: Embedder

Defined in

idiom.ts:135

id?

optional id: string

Defined in

idiom.ts:133

limit?

optional limit: number

Inherited from

IndexOptions.limit

Defined in

idiom.ts:79

model?

optional model: string & object

The model the embedder should use to generate embedding vectors.

Inherited from

IndexOptions.model

Defined in

embedding.ts:64

signal?

optional signal: AbortSignal

An abort signal that can be used to cancel the embedder call.

Inherited from

IndexOptions.signal

Defined in

embedding.ts:69


IndexOptions

Options for controlling an Index call.

Extends

Extended by

Properties

limit?

optional limit: number

Defined in

idiom.ts:79

model?

optional model: string & object

The model the embedder should use to generate embedding vectors.

Inherited from

EmbedderOptions.model

Defined in

embedding.ts:64

signal?

optional signal: AbortSignal

An abort signal that can be used to cancel the embedder call.

Inherited from

EmbedderOptions.signal

Defined in

embedding.ts:69


Tool()<F>

Type Parameters

F extends (…args) => unknown = (…args) => unknown

Tool(…args): ReturnType<F>

Parameters

• …args: Parameters<F>

Returns

ReturnType<F>

Defined in

tool.ts:6

Properties

description

readonly description: undefined | string

Defined in

tool.ts:12

id

readonly id: string

Defined in

tool.ts:8

name

readonly name: string

Defined in

tool.ts:10

parameters

readonly parameters: undefined | Schema

Defined in

tool.ts:14

returns

readonly returns: undefined | Schema

Defined in

tool.ts:16

Type Aliases

Embedded<T>

Embedded<T>: T extends string ? EmbeddingVector : T extends readonly string[] ? EmbeddingVector[] : T extends string | readonly string[] ? EmbeddingVector | EmbeddingVector[] : never

The return type of an Embedder call. If the argument is a string, an embedding vector is returned. If the argument is an array of strings, an array of embedding vectors is returned.

Type Parameters

T extends string | readonly string[] = string | readonly string[]

Defined in

embedding.ts:77


Embedding<V>

Embedding<V>: { [Model in EmbeddingModel]?: V }

A set of embedding vectors keyed by the model that generated each vector.

Type Parameters

V = EmbeddingVector

Defined in

embedding.ts:32


EmbeddingDistance()

EmbeddingDistance: (a, b) => number

A distance metric in an embedding vector space.

Parameters

a: EmbeddingVector

b: EmbeddingVector

Returns

number

Defined in

embedding.ts:27


EmbeddingModel

EmbeddingModel: keyof EmbeddingModelNames | string & object

The identifying name of an embedding model.

Defined in

embedding.ts:16


EmbeddingVector

EmbeddingVector: Float32Array

The type of an embedding vector. Embedding vectors are stored as float arrays for memory efficiency.

Defined in

embedding.ts:22


GenerativeModel

GenerativeModel: keyof GenerativeModelNames | string & object

The identifying name of a generative model.

Defined in

generative.ts:19


GenerativeParameters<F>

GenerativeParameters<F>: IsVariadic<Parameters<F>> extends true ? Parameters<F> : [...Parameters<F>, GenerativeOptions]

Type Parameters

F extends (…args) => unknown

Defined in

generative.ts:202


GenerativeReturnType<F>

GenerativeReturnType<F>: Promise<Awaited<ReturnType<F>>>

Type Parameters

F extends (…args) => unknown

Defined in

generative.ts:206


Idioms<T>

Idioms<T>: T extends readonly [] ? readonly [] : T extends readonly [infer Elem] ? readonly [Idiom<Elem>] : T extends readonly [infer Head, ...(infer Tail)] ? readonly [Idiom<Head>, ...Idioms<Tail>] : T extends readonly [...(infer Body), infer Foot] ? readonly [...Idioms<Body>, Idiom<Foot>] : T extends readonly infer Elem[] ? readonly Idiom<Elem>[] : never

Type Parameters

T extends readonly unknown[]

Defined in

idiom.ts:20


InstructionsSource

InstructionsSource: (args) => Promise<string | undefined> | string | undefined | Promise<string | undefined> | string | undefined

Defined in

generative.ts:73


Tools<F>

Tools<F>: F extends readonly [] ? readonly [] : F extends readonly [infer Elem] ? Elem extends (…args) => unknown ? readonly [Tool<Elem>] : never : F extends readonly [infer Head, ...(infer Tail)] ? readonly [Head extends (…args) => unknown ? Tool<Head> : never, ...(Tail extends readonly (...)[] ? Tools<Tail> : never)] : F extends readonly [...(infer Body), infer Foot] ? readonly [...(Body extends readonly (...)[] ? Tools<Body> : never), Foot extends (…args) => unknown ? Tool<Foot> : never] : F extends readonly infer Elem[] ? Elem extends (…args) => unknown ? readonly Tool<Elem>[] : never : F extends (…args) => unknown ? Tool<F> : never

Type Parameters

F extends readonly (…args) => unknown[]

Defined in

tool.ts:19


ToolSource

ToolSource: (args) => Promise<readonly Tool[] | Tool | undefined> | readonly Tool[] | Tool | undefined | Promise<readonly Tool[] | Tool | undefined> | readonly Tool[] | Tool | undefined

Defined in

generative.ts:21

Functions

decodeEmbedding()

decodeEmbedding(embedding): Embedding<Float32Array>

Parameters

embedding: Embedding<Buffer>

Returns

Embedding<Float32Array>

Defined in

embedding.ts:110


decodeEmbeddings()

decodeEmbeddings(embeddings): Embeddings<Float32Array>

Parameters

embeddings: Embeddings<Buffer>

Returns

Embeddings<Float32Array>

Defined in

embedding.ts:128


decodeEmbeddingVector()

decodeEmbeddingVector(vector): Float32Array

Parameters

vector: Buffer

Returns

Float32Array

Defined in

embedding.ts:98


defineFunction()

defineFunction<F>(config?): GenerativeFunction<F>

Type Parameters

F extends (…args) => unknown

Parameters

config?: GenerativeConfig

Returns

GenerativeFunction<F>

Defined in

generative.ts:231


defineIdiom()

defineIdiom<T>(value): Idiom<T>

Type Parameters

T

Parameters

value: T

Returns

Idiom<T>

Defined in

idiom.ts:41


defineIdioms()

defineIdioms<T>(values): Idioms<T>

Type Parameters

T extends readonly unknown[]

Parameters

values: readonly [T]

Returns

Idioms<T>

Defined in

idiom.ts:55


defineIndex()

defineIndex<T>(values, config?): Index<T>

Type Parameters

T extends readonly unknown[]

Parameters

values: readonly [T] | Idioms<T>

config?: IndexConfig

Returns

Index<T>

Defined in

idiom.ts:101


defineTool()

defineTool<F>(func): Tool<F>

Generates an LLM tool for a TypeScript function.

Type Parameters

F extends (…args) => unknown

Parameters

func: F

Returns

Tool<F>

Defined in

tool.ts:54


defineTools()

defineTools<F>(funcs): Tools<F>

Type Parameters

F extends readonly (…args) => unknown[]

Parameters

funcs: readonly [F]

Returns

Tools<F>

Defined in

tool.ts:68


encodeEmbedding()

encodeEmbedding(embedding): Embedding<Buffer>

Parameters

embedding: Embedding<Float32Array>

Returns

Embedding<Buffer>

Defined in

embedding.ts:118


encodeEmbeddings()

encodeEmbeddings(embeddings): Embeddings<Buffer>

Parameters

embeddings: Embeddings<Float32Array>

Returns

Embeddings<Buffer>

Defined in

embedding.ts:136


encodeEmbeddingVector()

encodeEmbeddingVector(vector): Buffer

Parameters

vector: Float32Array

Returns

Buffer

Defined in

embedding.ts:106


prompt()

prompt(instructions, args, options)

prompt<T>(instructions, args?, options?): Promise<T>

Type Parameters

T = string

Parameters

instructions: undefined | string

args?: Record<string, unknown>

options?: GenerativeOptions

Returns

Promise<T>

Defined in

generative.ts:249

prompt(args, options)

prompt<T>(args?, options?): Promise<T>

Type Parameters

T = string

Parameters

args?: Record<string, unknown>

options?: GenerativeOptions

Returns

Promise<T>

Defined in

generative.ts:254


resolveInstructions()

resolveInstructions(instructions, args): Promise<undefined | string>

Parameters

instructions: InstructionsSource

args: unknown

Returns

Promise<undefined | string>

Defined in

generative.ts:79


resolveTool()

resolveTool(tool, args): Promise<undefined | Tool<(…args) => unknown> | readonly Tool<(…args) => unknown>[]>

Parameters

tool: ToolSource

args: unknown

Returns

Promise<undefined | Tool<(…args) => unknown> | readonly Tool<(…args) => unknown>[]>

Defined in

generative.ts:34


resolveTools()

resolveTools(tools, args): Promise<undefined | Tool<(…args) => unknown>[]>

Parameters

tools: undefined | null | readonly ToolSource[]

args: unknown

Returns

Promise<undefined | Tool<(…args) => unknown>[]>

Defined in

generative.ts:52